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Neutrino and Antineutrino  
Charged-Current Inclusive  

Cross Sections & Flux Measurements  
in MINERvA



A MINERvA “natural hat trick” on 
interrelated topics …
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Date Speaker Title
Dec. 11 Phil Rodrigues

U. of Rochester
Identification of Multinucleon Effects in Neutrino-
Carbon Interactions at MINERvA

Dec. 18 Leo Aliaga
William & Mary

Flux Results from MINERvA

Dec. 25 No Seminar Happy Holidays!
Jan 1 Happy New Year!
Jan 8 Jeff Nelson 

William & Mary
Neutrino and Antineutrino Charged Current Inclusive 
Cross Sections and Flux Measurements in MINERvA

BONUS:  
“Measurement of Neutrino Flux from  
Neutrino-Electron Elastic Scattering”  
[arXiv:1512.07699]



This analysis is the subject of  
Josh Devan’s W&M dissertation 

Fermilab-Thesis-2015-29

Outline  

•  Introduction
> Neutrino interactions
> Status of charged-current inclusive 

scattering
> The low-ν method

•  The analysis
> MINERvA/NuMI
> Analysis design
> Systematic uncertainties

•  Results
> Fluxes and comparisons
> Cross sections and comparisons
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Goals of the long-baseline program 

•  Targets
>  Quadrant of θ23  (most uncertain of the angles)
>  Hierarchy of neutrino mass spectrum
>  CP violation in the neutrino sector

•  Later two driven by electron 
appearance measurements at long 
baselines at few-GeV energies
>  Comparisons of neutrino/antineutrino 

appearance
>  Understanding background systematic 

uncertainties
>  Oscillation parameters (esp. the 

quadrant) have significant impact on 
parameter measurements

•  Pushes most systematics to 
regimes we’ve never achieved!
>  Flux, interactions, energy scales, 

background, near/far extrapolation…
>  e.g. Both NOvA and T2K report 11% 

syst on their sample backgrounds
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DUNE CDR, Fig 3.23 (2015)
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State of scattering 
(ca. 2016)

•  Final SPS and TeVatron results
>  Many GeV to hundreds of GeV

•  Final results from MINOS
>  Down into the few GeV region

•  Final results from MiniBooNE, 
K2K, and SciBooNE
>  All these are for  E < ~1 GeV
>  Dearth of antineutrino data 

starting to be addressed
•  MINERvA, ArgoNeut, T2K 

results rolling in
>  Dozens of papers
>  Starting to get the right nuclei
>  Can’t fit it all on one plot 

anymore… a good thing!!!
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Adapted/updated from  
J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307 
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Neutrino event generators 
•  Neutrino experiments have are few in situ physics handles 

>  MIP/muon, muon decay (Michel) electrons, neutral pions
>  Only know the incoming neutrino direction accurately

•  We rely heavily on full simulations of neutrino interactions 
to understand:
>  Signal selection
>  Background rejection
>  Energy reconstruction
>  Near/far extrapolation

•  In the US program we most often use GENIE
>  C. Andreopoulos et al, NIM A, 614, 87 (2010)
>  We will use version v2r6p2 as the reference today

•  Many other generators exist
>  Some with fully specified final states
>  Some only with computed physics distributions

•  Central values for the generators are fits to scattering data
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Our generators (models) do not accurately 
reflect recent exclusive cross section data 

1/8/16

νμ + CH → μ+ + CH + π-

Adapted from PRD 81, 092005 (2010)  
by P. Rodrigues

Adapted from PRD 83, 052007 (2011)  
by P. Rodrigues

νμ + CH2 → μ+ + 0π-

MiniBooNE

SciBooNE

MiniBooNE

PRD 78, 112004 (2008)
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νμ + CH2 → μ+ + 
1π-

These examples are all  
charge pion production 



We now, however, know a lot more about 
what works well and what doesn’t

• QE-like and nuclear 
effects analyses favor a 
2p2h process and 
RPA-type nuclear 
effects 

• Pion data shows 
reasonable agreement 
on the strength of 
effects of intranuclear 
rescattering
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Coherent Pion

Resonance

Quasielastic

Low W Inelastic: W<2GeV

2<1GeV2 DIS: W>2GeV Q2Low Q

2>1GeV2DIS: W>2GeV Q

The role of inclusive scattering 

•  Generators require data to tune 
their models
>  They/We need more/better data! 

•  The current and future long-
baseline neutrino program 
focuses on the few GeV region

•  This region offers a particularly 
interesting mix of processes

“it’s complicated”

•  In that context, one particularly 
useful constraint for tuning is the 
inclusive (total) charged-current 
scattering cross section
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GENIE’s predicted 
composition in 
NuMI LE flux



World inclusive cross section measurements 
for neutrinos & antineutrinos
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Note: σ/E approaches a well-determined asymptotic value at high energies
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IHEP-ITEP, SJNP 30, 527 (1979)
IHEP-JINR, ZP C70, 39 (1996)
MINOS, PRD 81, 072002 (2010)
NOMAD, PLB 660, 19 (2008)
NuTeV, PRD 74, 012008 (2006)
SciBooNE, PRD 83, 012005 (2011)
SKAT, PL 81B, 255 (1979)

T2K (Fe) PRD 90, 052010 (2014)
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T2K (C), PRD 87, 092003 (2013)
ArgoNeuT PRD 89, 112003 (2014)
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ANL, PRD 19, 2521 (1979)
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CCFR (1997 Seligman Thesis)

PDG 2016  
Preview!

Thanks Sam! 

She says this 
is the first 
unveiling!



Neutrino flux measurement



Neutrino flux critical for any absolute 
cross section measurement

• D is data event yield
•  B is background estimate
•  U(  ) unfolding operation
• Φ is flux (AKA the hardest part)
•  ε is efficiency/acceptance correction
• ΔE is the bin width
•  T is number of targets
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How to know your neutrino flux?  

•  Ex situ via Hadron production data 
> External thin & thick target hadron production data 

can be used to modify off-the-shelf simulation 
packages

> Subject of previous JETP by Leo Aliaga (more later)
•  Measuring muon spectra at the end of the 

decay volume
> Get a muon for each muon neutrino so sampling the 

muon rate at various ranges allows evaluation of 
flux

> NuMI has three thresholds for its muon counters 
(not very finely grained)

•  Can also use standard-candle cross sections 
> Neutrino-electron scattering (more later)
> Low recoil event rates: subject of the seminar 
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The principle of the low-ν method  

•  ν is the energy transferred to the recoil system

•  In the limit of small ν, the charged-current 
cross section for neutrinos and antineutrinos is 
approximately constant as a function of 
neutrino energy (will show this shortly)
> That this is constant is needs to be true because we 

know that cross sections can be expressed by a set 
of structure functions 

•  A measurement of the low-ν interaction rate as 
a function of neutrino energy is equivalent to a 
measurement of the shape of the neutrino flux 
as a function of energy 
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The cross section for charged-current 
inclusive neutrino-nucleon scattering …

•  Where the “+” is for neutrino scattering;“-” is for antineutrino
•  E is the neutrino energy, M is the mass of the nucleon, x (scaling 

variable) and y (inelasticity) are given by

•  The internal structure of the nucleon is describe by  
structure functions F2(x,Q2), xF3(x,Q2), and RL(x,Q2). 

•  RL is the ratio of the cross section for scattering from 
longitudinally polarized W bosons to transversely polarized  
and is defined in terms of F1 and F2
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Then some algebra happens… 

•  Substitute y=ν/E and and Q2=2Mνx, group terms into 
ν/E, and integrate over x

•  Integrating this to low ν  (i.e. ν0<<E) causes the terms 
proportion ν/E, ν/E2 and ν2/E2 to be vanishingly small

•  Therefore σ(ν<ν0,E) is approximately constant
•  It deviates modestly due to Q2 dependence of the 

structure functions (Bjorken scaling violation)
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Game plan… 

•  The charged-current cross section for 
events with low hadronic recoil (ν) is 
nearly energy independent
> The low-ν cross section is a  

(nearly) standard-candle process! 
•  Due to the energy independence, the 

interaction rate is proportional to the flux: 

•  Use the extracted event rates to measure 
the neutrino and antineutrino fluxes

•  Then extract inclusive scattering cross 
sections using those fluxes
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This picture isn’t quite so simple  

•  Can’t cut at exactly ν=0
•  So you have to put in corrections from 

other structure functions 

•  For this analysis, these are calculated using the 
GENIE model

•  You have to normalize the flux somewhere
•  Can use precision external measurements as 

an anchor
•  Can use GENIE (which itself is based on data) 
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Some recent examples of the low-ν 
technique in action

•  NuTeV (and CCFR before them)  
>  They examined neutrino energies from 30 to 360 GeV and 

used a 5 - 20 GeV low-ν cut so all their “flux sample” 
events firmly in the DIS regime

>  These energies mean the recoil systems have fairly high 
multiplicity and fairly linear calorimetric responses with 
Gaussian resolutions

> NuTeV Collaboration (M. Tzanov at al.) Phys. Rev. D 74 
(2006) 012008 

•  MINOS
>  They examined neutrinos (antineutrinos) energies from 

3(5) to 50 GeV and used low-ν cuts as low as 1 GeV
>  The lowest energy application of the technique to date
> MINOS Collaboration (P. Adamson et al.) Phys. Rev. D 81,  

(2010) 072002 
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But isn’t your low-ν cross section is part of you 
the CC cross section you wish to measure?!? 

•  Successful history of the method in CCFR, NuTeV, 
MINOS

•  Seems like a circular argument …
>  Your standard candle is also part of the inclusive sample  

(at the tens of percent level in MINOS)
> One must use the simulation and external normalization to 

correct for this part of the sample
•  Leads to a balancing act…

>  Try to keep the fraction of low-ν events small by 
decreasing the ν cut

>  Try to keep the statistical uncertainty of the flux low by 
increasing the ν cut

>  Try to keep away from the lowest energy recoils where the 
uncertainties in the models “blows up”  
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Why use Low-ν in MINERvA? 

•  MINERvA 
>  It is a fine-grained detector with better hadron energy resolution
>  Ran in both neutrino and antineutrino enhanced sample 
>  Extend down to neutrinos energies as low as 2 GeV

•  To go this low in energy …
>  Need to extend the low-ν limit to as low as 300 MeV
>  Recoil systems with single particle final states are a 

significant probability so we get non-Gaussian response that depends on 
details of initial state 

>  Pushes into areas that were fully murky in 2009
•  How to address?

>  We evaluate the uncertainties in this method based on the data/mc 
discrepancies that we do see in these other channels and using new 
models for the effects people think we’re seeing.  

>  New results and theoretical progress give us better, model-motivated 
systematic uncertainties (both nuclear effects and process models)

>  New generators (like GENIE) have better tools to do more complete 
analysis of theoretical uncertainties 

>  Study of using low-ν method in MINERvA was performed 
•  A. Bodek, et al. Eur. Phys. J. C 72 (2012) 1973 
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At the 12/11 MINERvA JETP seminar… 

•  A theory based description of 
unmolded effects in GENIE 
(Valencia model) that 
improves agreement at the 
lowest emerges (top)

•  Neutrino cross sections (bott) 
in bins of momentum transfer 
as a function of  
recoil energy (ν)
>  Shows us where the  

issues are lurking
•  From earlier in the  

year we also saw  
that the modern  
final-state interaction  
(FSI) model in GENIE  
works better too
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See arXiv:1511.05944 &
Carrie McGivern’s 6/26/15 for pion 
based tests of FSI models



The MINERvA neutrino-nucleus 
scattering experiment



The MINERvA Collaboration 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MINERvA

1/8/16 MINERvA Low ν, Nelson/W&M

▪  Finely segmented solid scintillator (CH) detector on axis in NuMI
– Active tracker is all scintillator
– Calorimeters are scintillator w/ Fe or Pb
▪ MINOS detector for muon spectrometer
▪ Test beam program for energy scale/detector model

NIM A743 (2014) 130
NIM A789 (2015) 28
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NuMI Neutrino Beam 

•  120 GeV protons impinge on a 2 interaction length graphite target
•  Mesons produced in the target are focused by two magnetic horns
•  The beam composition is selected by the polarity of the current in the 

horns
>  Forward Horn Current (FHC) focuses π+ creating a neutrino-enhanced beam
>  Reverse Horn Current (RHC) focuses π- creating an antineutrino-enhanced beam

•  Can also change the target-horn configuration (and horn current) to 
focus different energy pions & change the neutrino energy spectrum
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p+C→π→µ +ν
µ

Image courtesy of Z. Pavlovic



The data set 

• NuMI low-energy  
tune (LE) data 
collected from 
2010-2012

• RHC 1.09×1020 POT
• FHC 3.18×1020 POT
• Since then we have 

been collecting data 
in NuMI’s medium 
energy (ME) tune

1/8/16 MINERvA Low ν, Nelson/W&M 27



MINERvA analysis chain



A MINERvA event
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In this plot the color reflects the energy recorded in the strip 



Muon reconstruction
•  For this analysis we require that the muon track be 

matched to a track in MINOS
>  Imposes a roughly 1.5 GeV threshold to punch through the 

MINERvA calorimeters and be above the MINOS tracking 
threshold

>  Limits the maximum muon angle to be within roughly 20° of 
the beam direction

•  MINOS returns momentum based on either range or 
curvature and charge based on curvature

•  Systematic uncertainties in MINOS muons
>  2% uncertainty on muon momentum from range due to mass 

model and dE/dx model in MINOS
>  0.6% (2.5%) uncertainty on muon momentum from curvature for 

momentum below (above) 1.5GeV 
•  Based on comparing magnetic field maps to magnetic induction 

measurements 
•  Based on comparisons between range and curvature for tracks 

stopping  
•  Added in quadrature to range uncertainty 
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Calorimetry  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Energy not on the muon road (or on the road and too energetic to be a muon) 
within a timing window in the tracker/downstream ECAL/ downstream HCAL



Low energy calorimetric response 
constrained by test beam experiment

•  This analysis uses a preliminary 
MC to the test beam response
>  10% proton uncertainty
>  5% pion uncertainty
>  3% for electron-magnetic response 

(also tested using Michel electrons 
and the neutral pion peak)

>  n.b. errors are 3%/5%/3% with tuning
•  Other particle responses were 

validated by comparing GEANT to 
external inelastic scattering data 
>  Sample samples also used to validate 

GENIE final-state interaction model
>  15% neutron response uncertainty
>  Higher energy inelastic pion/proton 

data
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NIM A 789, 28 (2015)



Average energy carried by particle type in  
the CC inclusive recoil system  
(MINERvA flux/ GENIE)
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Deficit at low energy is due to FSI, binding energy,  
and excitation of the nucleus

From simulation



Fractional recoil system energy 
resolution (neutrino CC inclusive)
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From simulation



Uncertainty on calorimetric 
reconstruction of the recoil system
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From simulation



The analysis



Low-ν method for flux determination 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MINERvA  
Preliminary

MINERvA  
Preliminary



Event yields  
(inclusive)
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MINERvA  
Preliminary

MINERvA  
Preliminary



Event yields  
(lowest of the 3 low v cuts)
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MINERvA  
Preliminary

MINERvA  
Preliminary



1/8/16 MINERvA Low ν, Nelson/W&M 41



1/8/16 MINERvA Low ν, Nelson/W&M 42

MINERvA  
Preliminary

MINERvA  
Preliminary
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MINERvA  
Preliminary

MINERvA  
Preliminary
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MINERvA  
Preliminary

MINERvA  
Preliminary
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Normalization technique  
Normalize fitting  
lower-cut sample to the 
upper-cut sample 
up to 22 GeV

Merge the higher -
cut sample 
with the new 
normalized points

Fit error is a 
uncertainty on the 
lower-cut samples

This is a shape measurement: 
The flux is normalized such that 
the extracted inclusive cross 
section matches an external target 
value at high neutrino energy



Systematic uncertainties



Systematic uncertainties
•  Flux

>  Hadron production, focusing
•  Largely unimportant since, in this analysis, we derive our own flux based 

on the low-ν sample
>  Will address this assertion in a bit

•  Detector 
>  Muon energy scale
>  Hadronic energy scale
>  Saturation and cross talk
>  Efficiency/normalization

•  Interaction model
>  GENIE gives a recommended set of parameter variations for 

systematic uncertainties
•  c.f. GENIE Collaboration, arXiv:1510.05494

>  In light of the “nuclear effects” analysis we have updated these for 
the low-recoil region

>  More on this in a bit…

•  Will show breakdowns of these uncertainties with results
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Low recoil reconstruction – validation 

•  Off-track “muon fuzz” on 
rock muons  
> Knock-on electrons and brems 

can feed into the recoil
> Tests accidental and cross talk 

models too
> We find our GEANT model 

doesn’t produce muon fuzz 
often enough

•  Add in fuzz from real rock 
muons to MC to make the 
spectrum agree with data
> Take 50% of the correction as 

an uncertainty
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MINERvA  
Preliminary

MINERvA  
Preliminary



Standard GENIE parameter “knobs”  
(Not really meant to be read!) 
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arXiv:1510.05494 



Model-based estimate of the 
uncertainties in QE-like events

•  In normal analyses we use a large (GENIE 
recommended) MA (axial mass) uncertainty as 
an effective uncertainty to encompass 
uncertainties in QE-like processes

•  For this analysis we implemented a different 
systematic uncertainty on QE-like events based 
on the modified version of GENIE used in our 
nuclear effects analysis
>  Sets of weights to account for RPA and MEC effects 

in QE events based in the Valencia model
•  Use difference between standard GENIE and the 

“Valencia” GENIE as the uncertainty due to 
unmodeled QE-like effects
>  Ran the analysis both ways and used the difference 

as an uncertainty
>  It is not implemented as a central-value weight for 

this analysis (use standard GENIE)
•  Residual uncertainty on MA is based on NOMAD 

and bubble chamber data (3%)
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RPA 
weights 

2p2h  
weights 



Examples of QE-like uncertainty vs the rest of the uncertainties

1/8/16 52

Selected data events (black squares stat errors)
Simulation from standard GENIE (pink/squares) 
Valencia-weighted GENIE (blue) 
Uncertainty implemented as: red–blue

Also shown: Acceptance corrected data and true GENIE (green/triangles)

We have these plots for each point in the analysis (see Josh’s thesis)  
the two points that go beyond the envelop are the worst in any distribution
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MINERvA  
Preliminary

MINERvA  
Preliminary



Flux results



Extracted neutrino flux by subsample  
(there ARE points under the pink and blue)  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Normalization WRT GENIE 
(at 9-12 GeV bin)

<1 means data favors a  
lower low-ν cross section  
than modeled in GENIE

Statistical uncertainties in 
table

MINERvA  
Preliminary



NuMI on-axis neutrino flux  
from the low-ν method (merged)
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MINERvA  
Preliminary

MINERvA  
Preliminary



Extracted antineutrino flux by subsample  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Normalization WRT GENIE 
(at 9-12 GeV bin)

<1 means data favors a  
lower low-ν cross section  
than modeled in GENIE

Statistical uncertainties in 
table

MINERvA  
Preliminary



NuMI on-axis antineutrino flux  
from the low-ν method (merged)
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MINERvA  
Preliminary

MINERvA  
Preliminary



Fluxes of neutrinos from defocused pions 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MINERvA  
Preliminary

MINERvA  
Preliminary

MINERvA  
Preliminary

MINERvA  
Preliminary



Comparisons between low-ν fluxes 
and other MINERvA flux constraints



MINERvA a priori flux estimation 
•  Leo provided a 

comprehensive JETP 
seminar (12/18/15) on 
the MINERvA flux 

•  Central value is based  
on ex situ data
> Using GEANT4 

simulations
> Corrected using external 

hadron production data
>  Errors based on 

experimental data
•  Errors due to the beam 

line geometry evaluated 
using beam simulations 
and assumed survey/
geometry errors
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The MINERvA flux program has been 
a multi-year effort (some history)

MINERvA physics program produced physics results based 
on 2 prior snapshots of the flux and the newly-unveiled flux

GEN0
>  Used for our 2013 quasi-elastic scattering papers

GEN1
>  This flux was used for most MINERvA analyses
>  This is the central-value flux used on the slides in this seminar

GEN2
>  Subject of Leo’s dissertation and seminar
>  Completed this Fall
>  Used for the recent nuclear-effects analysis
>  Two versions a version using only thick-target data (GEN2thick) 

and one also using thick-target data (GEN2thin)
>  We’ll compare this flux to the low-ν flux results

1/8/16 MINERvA Low ν, Nelson/W&M 61



Low-ν flux and GEN2 (thin target) 
neutrino comparison

1/8/16 MINERvA Low ν, Nelson/W&M 62

L. Aliaga, 12/18/15 FNAL JETP seminar

FHC neutrinos



Low-ν flux and GEN2 (thick target) 
neutrino flux comparison
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FHC neutrinos

L. Aliaga, 12/18/15 FNAL JETP seminar



Low-ν flux and GEN2 (thin-target) 
antineutrino flux comparison
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RHC antineutrinos

L. Aliaga, 12/18/15 FNAL JETP seminar



Low-ν flux and GEN2 (thick target) 
antineutrino flux comparison
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RHC antineutrinos

L. Aliaga, 12/18/15 FNAL JETP seminar



Results of flux comparisons 

•  Full covariance comparison (2-22 GeV)
>  Both are systematics limited for these focused samples
>  The uncertainties on these two fluxes are uncorrelated

•  Low-ν flux is more compatible with the flux derived 
from thin-target hadron production data than that 
obtained from replica target (thick-target data)
>  Thin-target data method is also directly applicable for 

other target geometries
>  Thick-target data is, in general, more precise
> Hence, the US-NA61 program for NuMI/LBNE
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Low-ν vs  
GEN2 (thin)

Low-ν vs  
GEN2 (thick)

X2 / DoF 4.8/10 18.6/10
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Flux from ν-e scattering 

•  Signal is a single electron  
moving in beam direction
>  Purely electro-weak process
>  Cross section is smaller than nucleus 

scattering by ~2000
>  123 ±17(stat) ±9(syst) events

•  Independent in situ flux constraint
>  Important proof of principle  

for future experiments
>  Statistically limited in the  

MINERvA LE sample (~8% error)
>  Results are consistent with new flux 

calculations
>  Results are consistent with  

the a priori GEN2 (THIN) flux  
(~2%) and with the low v flux

•  Further confidence in flux! 
>  Three independent methods 

yield consistent results
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MINERνA Data 
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Cross section results



Neutrino cross section by low-ν cut  
(plot is before data-to-data cross normalization)
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Data plotted with stat+syst errors 
GENIE 
normalized

MINERvA  
Preliminary



Antineutrino cross section by low-ν cut  
(plot is before data-to-data cross normalization)
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Data plotted with stat+syst errors 
GENIE 
normalized

MINERvA  
Preliminary



Neutrino cross section -  
Normalized and merged
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GENIE 
normalized Data plotted with stat+syst errors 

MINERvA  
Preliminary

MINERvA  
Preliminary



Antineutrino cross section -  
Normalized and merged
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GENIE 
normalized Data plotted with stat+syst errors 

MINERvA  
Preliminary

MINERvA  
Preliminary



NOMAD-normalized inclusive 
neutrino cross section

•  NOMAD 9-12 GeV 
bin has 3.7% 
uncertainty

•  GENIE systematic 
uncertainty  
in that bin is 6.5% 

•  NOMAD data point 
is 3.0% higher than  
the GENIE model
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MINERvA  
Preliminary



A data-driven normalization for the 
antineutrino cross section?

•  Unfortunately there are no sufficiently precise 
external measurements (like NOMAD) in small 
enough bins in our normalization region

•  Stick with GENIE value in the 9 – 12 GeV bin 
(superimposed as orange dot)
>  GENIE’s systematic uncertainty is 10.6%
>  Normalization drives the errors

•  Forthcoming analysis 
on neutrino/antineutrino  
cross section ratio will  
refine antineutrino  
normalization
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Cross checks
•  Show that the extracted flux is not significantly 

dependent on the assumed initial flux 
>  Also can think of this as a closure test
>  Use the extracted flux as the central value flux on MC and redo 

the entire low-ν analysis again

✓ Point-by-point the fluxes all agree to <1% level
•  Redo the entire analysis and extract cross sections from 

“defocused” samples and compare 
>  RHC neutrinos and FHC antineutrinos
>  Defocused pions in the beam so much different phase space for 

hadron production (and beam optics) hence much different fluxes
>  MINOS magnetic field defocuses muons in these samples so most 

much different acceptances
>  These are a small minority of the beam, so they are a stringent 

test of the backgrounds subtraction
>  Tests unfolding with radically different energy spectra
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It doesn’t matter if the pions were focused or defocused, 
the measured cross sections are consistent!
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Data with statistical uncertainties only

MINERvA  
Preliminary

MINERvA  
Preliminary

✓ 



Comparison to world data



Comparison to world data  
(the Big Picture)
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Thank you for this personalized plot!  



MINERvA results from select low-
energy world data
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All points are isoscalar corrected

MINERvA  
Preliminary

MINERvA  
Preliminary

Simulation is GENIE



Summary
•  Using the low-ν method, we extracted NuMI low-energy tune 

neutrino fluxes for muon neutrinos and antineutrinos or both 
focused and defocused samples
>  1st time this has been done for NuMI fluxes in the  

antineutrino-enhanced (RHC) beam
>  Lowest energy application of this technique
>  Lower than prior studies due to MINERvA’s better resolution resolution
>  These fluxes are consistent with the new MINERvA 

 “GEN2” a priori fluxes & with our neutrino-electron scattering data
>  These low-ν results helped to: validate the flux, pick the flux to use as 

our central value, and to validate revised horn conductor model
•  Using the low-ν fluxes we extracted muon neutrino and 

antineutrino inclusive CC cross sections
>  Extends inclusive data to lower energies (esp. antineutrinos)
>  A forthcoming analysis will also measure the neutrino-antineutrino 

cross-section ratio with lower uncertainties
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